
Effective date:

Revision No:

Issued by:

Approved by:

NATO UNCLASSIFIED

A N C Y
NATO Communications and Information Agency

Agence OTAN d'information et de communication

AGENCY INSTRUCTION

INSTR TECH 06.02.07

SERVICE INTERFACE PROFILE FOR REST MESSAGING

Original

NCIA Registry

0 4 FEB 2015
The Hague

Chief, Core Enterprise Services _ .v_0_·· ·~/{__q_~-~··_, ___ _

;fl J/2/Pj 1 ;J
Director Service Strategy _ ___._Cz"-,,()-"'~,"-- L"-F_,.;·~)/_/{,-'--(jft"-· _·'l_~_vn _ _ _

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

-$
•1c1

A G E N C Y

Amendment No

Organization

NCI Agency

NCI Agency

NCI Agency

R. Fiske

A. Ross

A. Tucker

NATO UNCLASSIFIED

INSTR TECH 06.02.07

Table of Amendments

Date issued Remarks

Author Details

Name Contact Email/Phone

ru i.fiske@ncia.nato.int

Page 2 of 32

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

-~

•1c1
AGENCY

0 PRELIMINARY INFORMATION

NATO UNCLASSIFIED

Table of Contents

INSTR TECH 06.02.07

Page

4

O .1 References-- 4
O . 2 P u r pose-- 4
0. 3 App I ica bi I ity -- 4

1 INTRODUCTION 4

1.1 Seo pe---5
1. 2 Audience --5
1. 3 Notat ion a I Co nve n ti on s ---5
1.4 Taxonomy Al I ocati on---5
1. 5 Te rm in o I ogy --5

1. 6 Go a I --6
1. 7 Non-Goa Is---6
1.8 Relationships to Other P rofi I es and Specifications ---6

2 BACKGROUND 6

2 .1 REST Definition -- 6
2.2 Considerations for the Use of REST --7
2. 3 XML and J SON ---9
2. 4 Best P ra ct ices --9

3 SERVICE INTERFACE SPECIFICATION 16

3 .1 Service Interface -- 16
3. 2 Trans po rt-- 17
3. 3 Message S tru ct u re-- 17

4 REFERENCES

5 ABBREVIATIONS

NATO UNCLASSIFIED

27

31

Page 3 of 32

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

-$
~Cl

A G E N C Y

NATO UNCLASSIFIED

INSTR TECH 06.02.07

AGENCY INSTRUCTION 06.02.07

SERVICE INTERFACE PROFILE FOR REST MESSAGING

0 PRELIMINARY INFORMATION

0.1 References

A. NCIA/GM/2012/235; Directive 1 Revision 1; dated 3 May 2013
B. NCIARECCEN-4-22852 DIRECTIVE 01.01, Agency Policy on Management and Control of

Directives, Notices, Processes, Procedures and Instructions, dated 20 May 2014
C. NCIARECCEN-4-23297, Directive 06.00.01, Management and Control of Directives,

Processes, Procedures and Instructions on Service Management, dated 03 June 2014

0.2 Purpose

This Technical Instruction (Tl) provides detailed information, guidance, instructions, standards and
criteria to be used when planning, programming, and designing Agency products and services. In this
specific case the Tl defines a Service Interface Profile (SIP) for one of NATO's Core Enterprise
Services.

Ti s are living documents and will be periodically reviewed, updated, and made available to Agency
staff as part of the Service Strategy responsibility as Design Authority. Technical content of these
instructions is the shared responsibility of SStrat/Service Engineering and Architecture Branch and
the Service Line of the discipline involved.

Tis are primarily disseminated electronica lly1
, and will be announced through Agency Routine Orders.

Hard copies or loca l electronic copies shou ld be checked against the current electronic version prior
to use to assure that the latest instructions are used.

0.3 Applicability

This Tl applies to all elements of the Agency, in particular to all NCI Agency staff involved in
development of IT services or software products. It is the responsibility of all NCI Agency Programme,
Service, Product and Project Managers to ensure the implementation of this technical instruction and
to incorporate its content into relevant contractual documentation for external suppliers.

1 INTRODUCTION

In order to ensure compatibility between services, both within NATO, and between NATO and its
partners, there is a need to ensure that a standard (and standards-based) profile can be defined
which wil l be mandatory for all service operations in the NATO Network Enabled Capability (NNEC)
messaging environment.

It is recognized that NATO communication and information systems (CIS) operate in a heterogeneous
environment, with service providers and consumers operating under multiple different frameworks
and application contexts. Therefore, this Service Interface Profile (SIP) has been designed to
accommodate these differences, and offer the widest possible support for a messaging
infrastructu re.

This specification provides the interface control for Representational St ate Transfer (REST) web
services (known as RESTful web services) that are deployed within the NNEC web service

1 https ://servi cestrategy. n r. nci a/Site Pages/Agency%20Di rect ives%20(Tech n ica I). aspx

Page 4 of 32

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

-$
'l\J C I

A G E N C Y

NATO UNCLASSIFIED

INSTR TECH 06.02.07

infrastructure. This covers only the ca ll from a Web Service Consumer to a Web Service Provider using
REST, and the response from the service provider. It includes how the message must be structu red
and the elements that must be contained within the call.

This profile has evolved in response to the available technologies and mechanisms that can be used
to apply messaging within the wider context of the web services environment. Furthermore, it has
been tested against the service implementations of NATO and Coalition member nations.

1.1 Scope

REST is an architectural style defined as a set of constraints on a distributed hypermedia system and
implemented by a set of standard protocols that adhere to these constraints. We here define the
necessary elements of the underlying specifications that REST uses. The document will not present
the complete specifications, namely hypertext transport protocol (HTIP), JavaScript object notation
(JSON), ext ensible markup language (XML) or hypertext markup language (HTML). As a result the SIP
is not an exhaustive definition of those specifications but rather an extension to further clarify how
the REST style can be employed for building web services in an NNEC environment. As a
recommendation in case of doubt refer to the correspondent formal specification noted on the
references section.

1.2 Audience

The target audience for this specification is the broad community of NNEC stakeholders, who are
delivering capability in an NNEC environment, or anticipate that their services may be used in this
environment.

These may include (but are not limited to):

• Project Managers procuring NATO communication and information systems.
• The architects and developers of service consumers and providers that interact with the

(NATO Unclassified) (NU)) SIP Proposal- REST Messaging v.1.0.
• Coalition partners whose services may need to interact with NNEC services.
• System integrators delivering systems into the NATO environment.

1.3 Notational Conventions

The following notationa l conventions apply to this document:

• The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in [IETF RFC 2119, 1997].

• Words in italics indicate references to terms defined in Section 1.4.
• Courier font indicates syntax derived from the different open standards.

1.4 Taxonomy Allocation

This service falls under the following allocation in the C3 Taxonomy [Tidepedia "C3 Taxonomy",
2012]:

Technical Services I Core Enterprise Services I SOA Platform Services I Message-oriented
Middleware Services.

1.5 Terminology

The following terminology is used in this specification:

Page 5 of 32

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

-$ - NATO UNCLASSIFIED

4-\JCI
A G E N C Y INSTR TECH 06.02.07

Web Service Provider A service that produces data for other services.

Web Service Consumer A service or application that calls other services in order to
retrieve data.

Message The structure used for exchanging data between the Web Service
Provider and Web Service Consumer.

Header The part of the message that contains additiona l information
about the message beyond the data that is being exchanged.

1.6 Goal

The goal of this profile is to:

• Support messaging patterns that will allow the broadest possible range of interoperability
between systems.

1. 7 Non-Goals

The following topics are outside the scope of this profile :

• Define how security may be applied to messages.

1.8 Relationships to Other Profiles and Specifications

1.8.1 Normative References

The following documents have fed into this specification, and are incorporated as normative
references. Where more than one version of the same standard or profile is listed, then support for
requirements from both versions are covered, although a single service need not implement both
versions.

• HTIP 1.1-RFC 2616 (IETF) - http://www.ietf.org/rfc/rfc2616.txt
• Uniform Resource Identifiers (URI) - RFC 3986 (IETF) - http://www.ietf.org/rfc/rfc3986.txt
• Media Types - RFC 2046 (IETF) - http://www.ietf.org/rfc/rfc2046.txt

• XML Media Types- RFC 3023 (IETF) - http://www.ietf.org/rfc/rfc3023.txt
• The application/json Media Type for JSON RFC 4627 (IETF)

http://www.ietf.org/rfc/rfc4627 .txt
• WSDL 2.0 (W3C Recommendation) - http://www.w3.org/TR/wsdl20.

2 BACKGROUND

2.1 REST Definition

REST is an architectural style defined by Roy Fielding in his doctoral thesis [Fielding, 2000]. Fielding
derived a number of architectural styles by successively introducing constraints on how a distributed
system can be charact erized. The motivation for the REST style is to characterize the World Wide
Web distributed hypertext system in order to highlight the architectura l featu res which lead to such
a highly successfu l distributed computing platform. The architectura l constraints defin ing REST which
concern this SIP are briefly as follows :

• Client-server: separation of concerns allows components to evolve independently.
• Stateless: communication from client to server must ensure that all information necessary

to understand a request is included in the request; it cannot rely on the context of the
communication or state of the server.

Page 6 of 32

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

-$
•1c1

A G E N C Y

•

•

NATO UNCLASSIFIED

INSTR TECH 06.02.07

Cache: server responses can be annotated as cacheable and clients can take advantage of
previous responses to avoid repeated equivalent requests.
Uniform interface: the principle of generality ensures that all components use the same
generic interface, optimized for the common use cases. This constraint is a combination of
four interface constraints:

1. Identification of resources

2. Manipulation of resources through representations

3. Self-descriptive messages

4. Hypermedia as the engine of application state.

Since REST is derived by essentially reverse engineering the World Wide Web standards, it is natural
that the standard implementation of the REST architecture is based on precisely the World Wide
Web standards of HTIP, HTML and URI along with their respective dependent standards. As such, we
can consider the REST specification as the combined open standard specifications of the underlying
protocols and data formats.

2.1.l RESTful Web Services

The REST architectural style can be employed for implementing web services which are known as
"RESTful web services". RESTful web services rely on HTIP as the transport protocol between Web
Service Providers and Web Service Consumers using the HTIP verbs GET, PUT, POST, DELETE etc. in
their specified manner. Resources that are exposed to RESTful web services are identified by URI and
are primarily represented to Web Service Consumers in XML or JSON.

Note that this definition of RESTful web services also encompasses the existing World Wide Web
where the end-user is the web service consumer using a web browser. It is the interaction between
the user and the web browser which RESTful web services aim to make amenable to automatic
processing, and as such the focus of RESTful web services is on making the web service response
machine interpretable.

The World Wide Web is an existence proof of a highly successful, scalable networked architecture
which can accommodate all manner of app lications and use cases. There are readily available
programmatic tools that use the same protocols and interfaces as the user-driven web browsers and
so can be used to programmatically interact with these existing applications.

2.2 Considerations for the Use of REST

Distributed computing is hard. The history of computing highlights repeated attempts to address the
issues of latency, distributed state, globa l address spaces, concurrency and partial failure with
various schemes to make it easier for the software engineer to build robust and scalable distributed
systems. One commonly repeated approach is to abstract away the differences between local and
remote computing such that the software engineer need not be concerned with the location of the
objects or services being invoked, only on their interfaces. This approach, typically using remote
procedure ca lls (RPC) with a standardized interface definition language and object/service discovery
and management, has been proposed a number of times: Sun's RPC, the Open Software
Foundation's DCE (distributed computing environment), Microsoft's DCOM (distributed component
object model), OMG's CORBA (common object request broker architecture), Java's RMI (remote
method invocation), XML-RPC and most latterly with industry consort ia proposals for simple object
access protocol (SOAP), WSDL and the WS-* stack. However, it can been argued ([Sun Microsystems
Laboratories, Inc., 1994]) that remote computing is inherently different to local computing: it is much
more difficult to manage resources globally; latency and caching are far more important for remote
objects; partia l fai lure and concurrency are much harder to deal with and less deterministic remotely

Page 7 of 32

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

-$
'IQCI

A G E N C Y

NATO UNCLASSIFIED

INSTR TECH 06.02.07

than loca lly and so new techniques must be brought in to deal with transactions, reliable messaging
etc.

The REST approach, in contrast, distinguishes between local and remote computing and focuses on
ways to handle the specific issues inherent in a distributed computing environment. The issues of
latency and caching are addressed by explicitly ensuring that responses can be cached wherever
possible. The issues of distributed state, concurren cy and partial failure are managed by ensuring
that methods which do not change the remote state are explicitly marked as idempotent - i.e. the
method can be repeated with the same result - and that the state of a resource is bounded in any
communications between client and server in such a way, that state is not part of the context of the
communication. In addition, a server can explicitly flag various different types of fai lure as well as
enumerate the allowed transitions of a resource in a response. Finally, a global addressing scheme is
defined allowing resources to be identified generica lly on the network.

Since REST is an architectural style, it is directly comparable with service-oriented architecture (SOA).
While both styles of architecture are characterized by having loosely coupled, modular components,
the SOA approach in contrast to the REST approach stresses the location transparency of these
components, and so also requires that components be discoverable at run time and that their
interfaces be described in such a way that they are also usable at run time (referred to as dynamic
binding). These differences in the characteristics of the REST and SOA architectura l styles are
highlighted by differences in the way they are most normally implemented.

For SOA, SOAP-over-HTIP and WSDL are the current standards of choice for protocol and service
description respectively. WSDL documents describe, in machine-readable form, the syntax of the
operations and the data types made available by a given service. As such, services described using
WSDL are predominantly RPC-style services having a service-specific interface and an endpoint URI at
which that interface is exposed. Services are discovered at runtime by way of a service registry that
can be programmatically queried for a specific interface, or other service characteristic.

For REST, HTIP and URI are the standards for protocol and resource identification respectively. Since
HTIP defines a uniform interface using the GET, POST, PUT, DELETE etc. "verbs", there is no
additional requirement for interface definition of any specific service - all services use the same
interface methods. In contrast, each piece of data to be operated on in a RESTful web service has its
own URI. A RESTful web service is therefore described by declaring a set of URI "nouns", one for each
piece of data, and by specifying what the HTIP "verbs" mean when applied to those nouns. Services
are discovered in much the same way that web pages are discovered: by fo llowing URI links in the
responses to previous HTIP requests.

In practice, the differences between the REST and SOA styles are often ignored and a large number of
currently deployed web services sit somewhere between being purely RESTful and purely RPC. These
types of web service have been described as REST-RPC hybrid (see [Leonard and Ruby, 2007]), and
tend to use ad-hoc methods outside of the HTIP protocol, for example by adding bespoke method
names to URls and simply using HTIP's GET or POST methods arbitrarily. REST-RPC hybrid web
services tend to be described by declaring the set of URls to be used as a combination of "noun" and
"verb" such that one URI will be used to create a resource while another will be used to update it and
yet another to delete it etc. In as far as these types of web service are quite common, a Web Service
Consumer shou ld be prepared to handle REST-RPC hybrid web services, but this SIP does not make
recommendations about their use as a Web Service Producer.

Ultimately, the choice of which architectural style to follow, and therefore which techno logies to use,
shou ld be driven more by the type of service interaction which is envisaged in a given system rather
than the particu lar implementation of a service. In addition, the choice of architectural style need not
be restricted to exclusively REST or SOA, but could equally include both styles in a larger syst em, or

Page 8 of 32

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

' NATO UNCLASSIFIED -$ -
•1c1

A G E N C Y INSTR TECH 06.02.07

include other styles such as asynchronous messaging. Some high-level guidance for the choice of
implementation is:

• Use SOAP/WS-* where the service interaction is fundamentally RPC, for example when
codifying some business process.

• Use message queuing implementations where the service interaction is fundamentally
around asynchronous messaging.

• Use REST/HTTP where the service interaction can be modeled naturally using named
resources (nouns) along with the generic uniform HTTP interface methods to cover the
majority of the use cases.

2.3 XML and JSON

RESTful web services require that an HTTP response is machine-readable but are also much easier to
work with if the response is also human-readable. Both XML and JSON text formats meet these
requirements, with JSON being preferred for the more lightweight Web Service Consumers. XML
tends to be preferred where messages need to be validated, filtered, signed, transformed etc. by
intermediaries, since there is a well-established family of specifications dealing with XML.

An important characteristic of REST is that a service response should be able to describe the
operations which can be performed on the service's resources - this is the notion of "hypermedia as
the engine of application state" in the definition of REST. Both XML and JSON formats are quite
capable of representing URI strings, with XML Schema offering this as a fundamental data type.

2.4 Best Practices

2.4.1 PUT and POST

2.4.1.1 CRUD

Create, read, update and delete (CRUD) are the main operations used when dealing with information
in persistent storage, most usua lly seen in relational database systems where they correspond
directly to the structu red query language (SQL) operations INSERT, SELECT, UPDATE and DELETE
respectively.

While REST/HTTP has similar operations, the correspondence with CRUD is not a direct one-to-one
match, specifica lly for create and update methods, but also due to the granularity of HTTP resources
compared to typical entities in a database system and how transactions are processed.

In HTTP, the creation and updating of resources can be done using either the PUT or POST methods,
where the choice of which method to use depends on how the resource is referred to in the HTTP
request, whether the new or updated resource URI is determined by the server or client and whether
multiple invocations of the same method wi ll result in the same end-state of the resource, i.e.
whether the method is idempotent or not.

2.4.1.2 The HITP PUT Method

The PUT method can be used by a client to create or update a resource where:

• The request URI refers to the resource to be created or updated, e.g. PUT /a/1 refers to
the /a/1 resource directly.

• The client can determine the URI of the resource by itself in advance, for instance by
being given the URI by the server in a previous interaction.

• The body of the HTTP request contains the full representation of the state of that
resource.

• Repeating exactly the same request more than once has exactly the same effect as
making the request only once.

Page 9 of 32

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

.
NATO UNCLASSIFIED -$ -

•1c1
A G E N C Y INSTR TECH 06.02.07

Note that the server will distinguish between creation and update of the resource by the response
code returned. The server must return HTIP response code 201 (Created} if a new resource is
created. Otherwise, the server should return code 200 (OK}, 204 (No content} or some other
response code as necessary, but not 201 (Created).

Since the PUT method is idempotent, an intermediary is allowed to cache the response to a given
request in order to reduce network latency and traffic. In addition, a client can safely repeat a PUT
request where it is unknown whether the request made it to the server, for instance if a network
timeout occurred.

2.4.1.3 The HTIP POST Method

In contrast, the POST method is used by a client to create or update a resource where:

• For creation, the request URI is not the URI of the resource to be created, but instead a
"container" or "factory" resource, e.g. POST /customers might be used to create a new
customer resource contained by the /customers resource. Note that the request URI must
be an existing resource on the server, otherwise an error is returned.

• The server is responsible for determining the URls of the resource to be created and as
such these URls are managed directly by the server.

• For update, a POST request to an existing resource is expected to contain information in
the body of the request as to what updates should be made to the given resource or
subordinate resources. For example, sending POST /log might be used to append an entry
to a log resource without creating a new subordinate resource.

• Repeating the same request more than once can result in more than one resource being
created or resources being updated twice, for instance adding the same log entry twice.

In response to a POST, if a new resource has been created then the server should respond with code
201 (Created) and a Location header giving the new resource URI. In other cases, the server can
respond with code 200 (OK} or 204 (No content) or some other code, depending on what needs to be
conveyed back to the client.

The POST method is not idempotent and the server response to a given client request shou ld not be
cached, unless the response includes specific Expires or Cache-control headers.

From [IETF RFC 2616, 1999], the POST method is intended to cover the following use cases:

• Annotation of existing resources
• Posting a message to a bulletin board, news group, mailing list, or similar group of articles
• Providing a block of data, such as the result of submitting a form, to a data-handling

process
• Extending a database through an append operation.

In general, the request URI used in a POST request is a resource which is considered to be a collection
or factory resource, and the body of the POST request is considered to be a subordinate entity to
that collection or factory resource. Again, from [IETF RFC 2616, 1999], a resource is subordinate to
another resource "in the same way that a file is subordinate to a directory containing it, a news
article is subordinate to a newsgroup to which it is posted, or a record is subordinate to a database."

2.4.1.4 Granularity of a Resource

The resources exposed by a RESTful application tend to be of a larger granularity than data items in a
traditional database, driven by the way resources tend to be used by clients and performance
requirements when transferring resource state over a network. Since the network latency of a set of
HTIP interactions is generally more of a concern than when using a local database, those resources

Page 10 of 32

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

-$
•1c1

A G E N C Y

NATO UNCLASSIFIED

INSTR TECH 06.02.07

whose stat e is persisted in a relational database will tend to consist of a number of related data
items from the database combined in to a single logical and self-contained representation.

This is another reason that the CRUD operations on a database do not necessarily map directly onto
the REST/HTIP architecture - in general there is not a one-to-one map between a row in a database
table and a resource at a given URI.

2.4.1.5 Transactions

Transactions can play an important role in database-driven applications, ensuring that the overall
application state remains consistent over a series of interactions. However, for RESTful applications,
none of the standard HTIP methods can be used to lock resources, begin, commit or roll back
transactions. The general technique in a RESTful architecture for accommodating methods which do
not map directly to the standard ones is to instead come up with a new class of resources which
encapsu late the concept in such a way that the standard HTIP methods can apply. In much the same
way that the adage, "there ain't a noun which can't be verbed", applies in English, in REST, there ain't
a non-REST verb which can't be turned into a REST resource noun.

In the case of transactions, a RESTful architecture would coin a set of transaction resources either as
subordinates to a resource they refer to, or as subordinates to some transaction manager resource,
and then ensure that the state of the transaction resource is consistently linked to the resources it
manages. See [Leonard et al., 2007) for examples of how transactions can be modeled as resources in
their own right.

2.4.1.6 POST once exactly

One way to cope with the issue of POST potentially altering a resource in a non-deterministic way has
been proposed in [Nottingham, 2005), and while not having been accepted as an RFC, has been
successfully used (e.g. IBM's System Director REST application programming interfaces (API) to avoid
repeated POST requests having undesired side-effects.

The general approach is that a server informs a client of specia l "POE" (post once exactly) resources
which the client can then perform a POST to. The contract of a POE resource is that the first time a
client performs a POST, t he server will respond with an affirmative 2xx status code, but then if a
client performs another POST to the same resource, the server shou ld respond with a 4xx code, e.g.
405 (Method not allowed).

2.4.1.7 HATEOAS

The phrase "Hypertext as the engine of application state", abbreviated as HATEOAS, refers to a core
property of RESTful architectures, namely that a server should be able to tell its clients which
transitions in application state can be taken at any point. By responding with resource
representations which contain references to other resource URls, a service can encapsu late its
domain knowledge and contractual understanding of what can be done to the resources it manages.
In this way, the coupling between client and server can be reduced, such that a client need not be
hard-coded with a pre-existing understanding of which resources to manipulate and what methods
to apply to them, but can instead "follow its nose" to the URls it receives from the server.

Responding with URls as part of the representation of resources is important when using the PUT
method to create resources, as the client must use the URI of the resource to be created as the
context of the PUT method.

2.4.1.8 PUT and POST Summary

The main differentiation between the HTIP methods PUT and POST is that PUT is idempotent while
POST is not; so it is good practice to use PUT for the creation and update of resources where
possible, leaving POST for those cases which do not fit quite as neatly into the semantics of PUT.

Page 11of 32

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

-$
•1c1

AG E NCY

NATO UNCLASSIFIED

INSTR TECH 06.02.07

Using PUT for create and update does however require that the cl ient knows in advance the URI of
the resource it will be manipulating, which either results in a more tightly coupled client, or
additional information from the server from previous responses. The client must also PUT a complete
representation of a resource, even when it is updating only a small part of that resource. In some
cases it is, therefore, easier and may take fewer network interactions for the client to POST to a
container or factory resource and if necessary retrieve a new URI in one go.

2.4.2 Uniquely Identifiable and Network-addressable Resources

In the context of REST addressability means ensuring that applications expose their useful data as
resources and give them URls. Since the URI encodes the protocol (scheme), host and port
(authority) and path to a resource, a machine can automatically make use of the resource without
having to be given separate instructions on how to make use of the address.

A URI identifies a resource rather than a representation . When a client asks a server for a resou rce,
the server will respond with the best possible representation for that resource, given the client's
preferences. A client can express its preferences by using the HTIP Accept header.

Every URI should designate exactly one resource. Note that this does not mean the converse is true -
that every resource has exactly one URI - as in general there is one URI per resou rce and potentially
many representations per resource. In some cases, however, the same resource can have more than
one URI; this is termed URI aliasing. For instance, the most current version of a document might have
two URls: one with the date of publication and another with the string "latest" as part of its resource
URI. However, if a resource can have multiple addresses, then any other resources which relate to it
will also need to either relate to all the possible addresses of the resource, or arbitrarily pick one URI,
or use one canonical URI of the resource. Giving multiple addresses to a resource dilutes the va lue of
a resource - the network effect suggests that the "value of a resource can be measured by the
number and value of other resources in its network neighbourhood" (Metcalfe's law), so by having
multiple addresses this potentially splits the network neighbou rhood into isolated islands of
connected resources.

Specific representations or a resource can have their own URI, for instance an image resource might
have a canonical URI of http://example.com/images/tree along with alternative URls
http://example.com/ images/tree.svg and http://examples.com/images/ tree.j peg etc. In this way, a
client requesting the canonical URI with a preference for JPEG (Joint Photographic Experts Group)
imagery might result in the server responding with a 303 (See other) pointing to the URI of the JPEG
representation.

Making use of the fact that the fully qualified domain name system (DNS) name for a server is a
globally recognized address for the server, a URI can itself be a globally addressable resource. DNS
also allows for global delegation of domains from top-level domains down through counties,
organizations and organizational units, where management, ownership and ultimately trust can be
delegated in a natural way through the enterprise. This natural delegation should be used wherever
possible by services in order to publish and manage their own resource under their own delegated
domain name, i.e. services should publish their resources using fully qualified DNS names in the
authority section of the URI rather than local names or numeric Internet protocol (IP) addresses.

Often, a number of RESTful services may run on a server in separate processes on separate ports and
under different paths, or for the purposes of load-balancing and redundancy, on completely separate
servers. This can lead to a fragmented address space for resources which would conceptually and
logically be considered to be at the same server address. For a standard user facing web sites, this is
often overcome by the use of a reverse proxy, acting as a front-end to the various services, rewriting
incoming URls, passing on requests for those URls, and in some cases re-writing URls in the

Page 12 of 32

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

-~-
4SICI

A G E N C Y

NATO UNCLASSIFIED

INSTR TECH 06.02.07

responses if the services cannot do so themselves. The proxy essentially maps internal URls from
different servers, ports and paths into a single, consistent external URI space rooted at an externally
addressable URI. For RESTful web services, a similar approach can be useful : a reverse proxy can be
used as a lightweight method to de-couple the external facing URI address space from any internal
changes which might be necessary as the services evolve or scale. A reverse proxy can also help when
managing firewalls and security mechanisms, since the proxy becomes the single entry point to the
internal network of servers.

2.4.3 Structuring Resources and Relationships between them

In its most general form, a URI is a string of characters comprising a scheme, authority, path and
optional query and fragment. For HTIP URls:

• The scheme is the string " http".
• The authority is the domain name and port number where the HTIP service can be found.
• The path is a hierarchical space of strings separated using the slash (/)character.
• The query is a set of keyword value pairs to be used to parameterize a resource.
• The fragment is used only by the client to refer to a specific part of a resource; this part of

a URI is not sent to the server in a request.

One method for expressing the relationships between resources is to make use of the hierarchical
nature of the generic URI syntax-that is, the path, query and fragment parts. This hierarchy is meant
to express the "order of decreasing significance, from left to right" ([IETF RFC 3986, 2005)). In
practice, this hierarchy is most often used to express the relationship of containment, and goes hand
in hand with the use of relative URls which allows resources to link to each other in a local tree
representation such that the tree of resources can easily be moved without breaking all the
relationship links between local resources. The hierarchy notion is also used to express subordinate
resources: one resource which manages other resources "underneath" it in the hierarchy.
Subordinate resources can be used as described earlier with the POST method.

When information resources are not related to each other hierarchically, separator characters other
than the slash (/)can be used to delimit parts of a URI. Common practice is to use commas(,) when
the ordering of the parts matters, and semicolons (;) when the ordering does not matter.

Making use of hypertext is one of the key characteristics of REST, and in this context means that a
resource's representation must be able to express relationships to other resources such that a client
can follow these relationships and operate on other resources as directed by the server. A
relationship between resources can be described using a pair of URls, denoting the subject resource
and the object resource respectively. Commonly, neither the subject resource nor the type of the
relationship are made explicit in the representation, although when they are the standard
representation is to use a URI to represent the type of relationship and so form a triple of subject,
relationship-type and object URls as described in [W3C RDF-Primer, 2004).

The subject resource is essentially the resource as requested by a client, modulo any redirections the
server suggests, and is more commonly referred to as the base URI of a document. However, as soon
as the representation of a resource is used outside of the context of a client's requ est and the
server's response, this implicit base URI is lost - for instance if the resource's representation is saved
to disk, or sent by a different messaging protocol to another service. The base URI of a resource is
also important when using relative URls, as above, as the algorithm for resolving relative URls
depends on the base URI. For these reasons, common practice suggests that a resource's
representation should contain its own URI where possible: for XML, this can be achieved using the
xml:base attribute on the document element; for JSON there is no standard, but commonly a JSON
object is returned with a special field, "href", used to represent the base URI.

Page 13 of 32

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

' NATO UNCLASSIFIED -$-
•1c1
AGENCY INSTR TECH 06.02.07

The representation of a resource should also describe that resource's relationships to other
resources by using URls. For XML based representations, the Xlink specification [W3C Xlink 1.1,
2010] can be used to express these relationships in a natural way. For JSON, current practice is to
express the relationship as a JSON object of the form:

{"relationshipName": {"href": "http://example.com/a/b"}}

where "relationshipName" is a chosen name for the relationship.

2.4.4 Opaque URIS

A fundamental axiom of the architecture of the World Wide Web is that URls should be opaque to
clients. That is, a client should not need to pick a URI apart to determine what it means or what to do
with it; the fact that a URI ends with a particular string, for instance ".html" should not be used by a
client to deduce that the resource is necessarily an HTML document. Opaque URls are used to ensure
that a server can direct a client to which resources to use and how they should be used without the
client having to know in advance the particular URI structure that a server uses; the opacity axiom
goes hand in hand with the use of hypertext as the engine of application stat e and ensures that
cl ients can be generic and loosely coupled from the specific implementation of a server. Where
metadata about the resource needs to be conveyed, it is done using the standard HTIP headers and
the rest of the information a resource conveys is carried in the representation of the resource itself.

Ensuring resource URls are opaque to a client does not mean that URls should be mangled or
obfuscated such that they cannot be used to infer any meaning. It only means that a client should
not rely on the structure of a URI. Indeed, having some meaning that a human can derive from a URI
helps in debugging the intention of the URI in the same way that the HTIP protocol, XML and JSON
are all human-readable, and using human-readable identifiers helps convey the intended meaning of
the protocols and data to the people developing the services.

If a client is not meant to infer structure from a URI, then it is the responsibility of the server to give
the client all the information it needs to operate on the resources it manages, which includes the
responsibility of "minting" URls for the creation of new resources and passing those UR ls t o the client
for use in any PUT or POST methods.

2.4.5 Caching

[IETF RFC2616] describes the basic design behind HTIP caching as well as providing detailed
specifications of the HTIP methods, HTIP headers and HTIP response codes required for HTIP
caching. However, there is no doubt that the concept of HTIP caching is complex and as such is
misunderstood by implementers resulting in potentially harmful results. So why implement HTIP
caching? There are two main benefits for providing HTIP caching:

5. Latency - HTIP request/response latency can be reduced by having a representation
of the resource closer to the Web Service Consumer. This improves the performance as
the time to satisfy the HTIP request is reduced.

6. Bandwidth - Network bandwidth can be limited by reducing the number of network
hops required in the act of returning a representation in an HTIP response.

To support these two HTIP caching benefits the following HTIP caching mechanisms should be
deployed:

1. Expiration caching

2. Validation caching.

Expiration caching supports improved network latency by determining if a cached resource
representation is fresh (not out of date). This type of caching can be controlled by two methods:

Page 14 of 32

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

' NATO UNCLASSIFIED -$ -
~JC I

A G E N C Y INSTR TECH 06.02.07

1. Expires header and Date header, or

2. Cache-Control header w ith the following directives: max-age; max-fresh; and
max- stale.

In the case where both methods are applied, the cache-control directive shall be used.

Not all HTIP verbs can benefit from caching. The HTIP PUT, DELETE AND POST verbs, in their nature,
invalidate the resource representation identified by the Request-URI or the Location header. Caching
shall primarily be supported by the HTIP GET and HEAD verbs. In the case where best practices are
fo llowed, RESTful Web Service Consumers that perform an idempotent HTIP PUT request may
indicate that the response is cached by including a cache-control header with the required
directive.

HTIP requests that contain query strings within the Request-URI path shall not be cached. Such
requests may trigger side-effects to the resource potentially resulting in a non-consistent cache.

Validation caching supports improved network bandwidth by conditional requests between entities
in the HTIP request/response chain to determine if the representation of the resource has changed.
This type of caching can be controlled with by two methods:

1. Last-Mod ified header and If -Modified- Since header or If -Not
Modified-Since, or

2. ETag header and If-None-Match or If-Match.

In both cases if the resource representation has not changed, the Web Service Provider shall return a
304 HTIP status code. This response may contain additional cache-control header and
directives. In the case where the resource representation has been changed, the Web Service

Provider shall return a representation of the resource that has been requested with a 200 HTIP
status code.

With regards to caching it is recommended to use the Last-Modified header as computationa lly the
ETag header may offer more computational work on the server side. However, it must be noted t hat
the ETag header can be used to benefit RESTful web services where multiple Web Service Consumers
are int eracting with a single resource. A good design for ETag header fie ld values can assist with
mainta ining and achieving consistent resource state.

In order to realize the benefits of HTIP caching we must first understand the potential threats posed
by implementing HTIP caching. Firstly, RESTful web service implementations can have a number of
interm ediaries or HTIP caches between the Web Service Consumer and Web Service Provider. A HTIP
cache is the temporary storage for representations of resources. As a request for a resource
representation is made, that request may transit through a number of different types of HTIP caches
until it reaches the Web Service Provider {in the case where cache conditions have not been met)
that is serving the request. There are three main types of HTIP caches:

1. Local HTIP cache -A cache serving a single Web Service Consumer. This type of cache
is typically stored on the same computer as the Web Service Consumer and can st ore
the cache in memory hence being capable of serving frequently accessed resource
representations immediately.

2. Proxy HTIP cache - A cache serving multiple Web Service Consumers and Web Service
Providers. This type of cache is typically locat ed at the organization boundary.

3. Reverse HTIP cache - A cache serving a single Web Service Provider for multiple Web

Service Consumers.

Page 15 of 32

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

-$ -
4.\J C I

A G E N C Y

NATO UNCLASSIFIED

INSTR TECH 06.02.07

With the potential for there being many types of HTIP caches between a Web Service Consumer and
a Web Service Provider, there is the high possibility of inconsistency between the representations of
a resource along the HTIP request/response chain. This is harmful as a Web Service Consumer may
be acting on stale representations . Web Service Providers may be able to notify HTIP caches that a
resource representation has been modified or deleted; however, it must be noted that this goes
against one of the main REST principles for stateless communications between Web Service
Consumers and Web Service Providers.

Secondly, NATO must provide effective and efficient conduct of modern jo int military operations
where cross-domain information exchange is required between different classification security
domains within NATO; NATO and NATO nations; NATO and NATO-led missions; NATO and non-NATO
nations; and, NATO and other government departments or non-government organizations. As such,
access requests for resource representations must be robustly controlled in order to preserve the
confidentiality and integrity of those resources. Resources that are deemed to be sensitive shall not
be cached.

Thirdly, HTIP caching is only beneficial if it proves to save network latency and network bandwidth. If
resources change frequently, then HTIP caching provides no benefits for RESTful web services.

To support the second and third threats to the benefits of HTIP caching Web Service Consumers and
Web Service Providers can indicate that caching is not required/ permitted for that resource
representation . A Web Service Consumer shall indicate to all entit ies in the HTIP request/response
chain that information shall not be cached by inserting the HTIP header cache-contro l with the
additional directive of no-store. The no-cache directive may optionally be used; however, this
shall not be recognized by HTIP 1.0 implementation. In the case where the Web Service Provider
shall respond with a request for sensitive information, the HTIP response shall contain the HTIP
header cache-control with the additional directive of no-store. The private directive may
be used; however, a private cache may cache the response. Additiona lly, a Web Service Provider can
include an Expires header with either an invalid date value or a date value that is t he same as the
Date header field value.

3 SERVICE INTERFACE SPECIFICATION

3.1 Service Interface

As stated earlier, REST is an architectural style defined by the constrained and consistent use of a
number of protocols. For that reason there is no single defined service interface other than t he use
of HTIP itself. However, there are machine-processable description languages for HTIP-based web
applications using REST. These descriptions provide information on how a RESTful web service can be
invoked, which parameters are expected, and what data structures are returned by the service.

3.1.1 Definition

In order to increase interoperability, REST services SHALL have a clearly defined interface.

The interface SHALL be clearly documented in human-readable format describing:

• All resources
• Methods supported for each resource

• Internet media types and representation formats supported in HTIP requests and
responses

• All fixed URls

• Query parameters used for URls
• URI templates and rules for token substitution

Page 16 of 32

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

-$- NATO UNCLASSIFIED

•1c1
A G E N C Y INSTR TECH 06.02.07

• Supported security mechanisms for accessing resources

• Relationships between resources and type of relationship.

The interface SHOULD be defined in machine-readable format, using Version 2.0 of the WSDL.

WSDL 2.0 [W3C WSDL 2.0: Primer, 2007) is the most recent update to an earlier specification that
now accepts bindings to all HTIP request methods and is a W3C (World Wide Web Consortium)
recommendation. While this results in better support for RESTful web services, it is recognized that
the support for WSDL 2.0 in terms of tools is weak compared to the older Version 1.1.

Note that by following the best practices for REST, a service already has a well-defined interface
specification in HTIP along with the ability to specify, in machine-readable format, how a client can
use its resources by following the HATEOAS pattern. In addition to this, typica l interface definition
languages such as WSDL are intended to cover the RPC style of service interaction rather than the
resource-oriented REST style. As such, the emphasis for service interface definition is placed first on
using the REST best practices, then on describing the interface in a human-readable format as above,
followed by the use of WSDL 2.0 where applicable.

3.2 Transport

Although the REST architectural style could conceivably be used over protocols other than HTIP,
these are not covered by this SIP. Therefore, all representations MUST be transferred using HTIP 1.1
([IETF RFC 2616, 1999]).

3.3 Message Structure

3.3.1 Input

This SIP places no constraints on the type of data that can be sent to the Web Service Provider in the
body of an HTIP request. However, it is RECOMMENDED that only XML or JSON be used. The
request ed data object representation SHALL be negotiated as described in Section 3.3.1.4.

3.3.1.1 HTTP methods

REST is heavily reliant on the uniform use of HTIP verbs. All HTTP verbs apply to the request URI
entity which is the URI specified on the HTTP request.

RESTful web services SHALL use the HTTP verbs as specified in HTTP 1.1 [IETF RFC 2616, 1999).

It is further RECOMMENDED that RESTful web services use the prescribed HTTP verbs for CRUD
operations as specified in Table 1.

Page 17 of 32

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

-$
~CI

A G E N C Y

Verb

GET

POST

PUT

DELETE

HEAD

OPTIONS

NATO UNCLASSIFIED

INSTR TECH 06.02.07

Table 1
RECOMMENDED HTIP verbs supporting CRUD operations in REST

Description

Retrieves an information object identified by the request URI.

Updates an information object identified by the request URI. The request URI
MAY: create new additional information objects; update additional
information objects; or perform a variety of create or updates of information
objects.

Creates a new information object identified by the request URI.
Updates an information object identified by the request URI. It is
RECOMMENDED that the update operation is a complete update of the
information object identified by the request URI.

Deletes an information object identified by the request URI.

Retrieves the same HTIP header fields and HTIP status code as the GET HTIP
verb without the representation of the information object identified by the
request URI.

RESTfu l web services MAY use this HTIP verb to determine the list of HTIP
verbs supported by the information object identified by the request URI.

3.3.1.2 HTIP headers

HTIP headers MUST on ly be used to transmit representation metadata and message control
information.

Parameters for the operation to be performed on the resource MUST NOT be sent as HTIP headers.

It is RECOMMENDED that only standard headers are used. An informational list of these HTIP
headers for IANA registry header fields can be found in [IETF RFC 4229, 2005].

However, well-documented custom headers MAY be used, for example in order to prevent cross-site
scripting attacks.

The set of RECOMMENDED and REQUIRED request headers are included in Table 2.

Page 18 of 32

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

' NATO UNCLASSIFIED -~w
'l\JCI
AGENCY

HTTP header field name

Accept

Cache-Control

Content-Length

Content-Type

Cookie

Date

Host

3.3.1.3 URls

INSTR TECH 06.02.07

Table 2
Request HTIP headers

Required Notes

RECOMMENDED This specifies which media types are
acceptable in the response (see
Section 3.3.1.4).

OPTIONAL This is used to specify how all entities will
cache the information. For further details on
this and other caching headers, see
Section 3.3.1.6.

RECOMMENDED This specifies the length of the body of the
message (if known).

REQUIRED This specifies the format of the body sent in
the request.

OPTIONAL This contains information that can be used
for preserving state across ca lls (see
Section 3.3.1.5).

OPTIONAL This specifies the date and time of the
submitted HTIP request.

REQUIRED This identifies the host and port to which the
request is being sent.

A URI provides a simple and extensible means for identifying an information object on the network.
The syntax and semantics of a URI SHALL be represented as specified in [IETF RFC 3986, 2005].

Each information object, on the network, SHALL be globally addressable.

3.3.1.3.1 URI Scheme Name

The URI scheme name SHALL be http as defined by [IETF RFC 2616, 1999] or ht tps as defined by
[IETF RFC 2817, 2000] .

3.3.1.3.2 URI hierarchical component

The URI hierarchical part, representing the naming authority, SHALL contain a host
subcomponent.

The host SHALL be globally addressab le on the network.

It is RECOMMENDED that the host is identified by a fully qualified domain name {FQDN; refer to
Domain Name System [IETF RFC 1035, 1987]).

The host MAY be identified by an 1Pv4 address, however, URls containing such a host
representation SHALL not be permitted in cross-domain information exchange scenarios.

3.3.1.3.3 URI Path

The path component of the URI contains the scoping information and SHALL be persistent.

Page 19 of 32

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

' NATO UNCLASSIFIED -$ -

•1c1
A G E N C Y INSTR TECH 06.02.07

It is RECOMMENDED that the URI path contains versioning information of the information object to
support persistent URls on the network.

In the case where persistence cannot be supported, the Web Service Provider SHALL support HTIP
redirects with the HTIP Location header field.

To indicate hierarchical relationships between information objects it is RECOMMENDED that the URI
path is constructed using forward slash separators('/').

To indicate non-hierarchical components within the URI path it is RECOMMENDED to use a comma
(',')or semi-colon(';').

A URI pat h MAY contain a query part.

A URI path containing a query part SHOULD use an ampersand('&') to separate parameters.

3.3.1.3.4 Security

A URI SHALL be opaque to all consumers.

Web Service Consumers SHALL NOT be capable of gathering sensitive information about the
information object or the CIS containing the information object through aggregation techniques
carried out on the URI.

3.3.1.3.5 Further Constraints

Web Service Providers SHOULD NOT use file type extensions within the URI to provide the
representation of an information object.

Web Service Consumers and Web Service Providers SHOULD support content negotiation as specified
in Section 3.3.1.4.

The timestamps in used headers or queries SHOULD be formatted according to the [ISO 8601:2004,
2004] standard.

3.3.1.4 Information Object Representation

The Web Service Consumer SHALL encode the HTIP Accept header field value with one or more of
the supported Internet Media Types (as specified in [IETF RFC 3023, 2001]).

The Web Service Provider SHALL honour the preferred Intern et Media Type requested by the Web

Service Consumer or return a 4 0 6 (not acceptable) HTIP status code.

Figure 1 illustrates supporting representations of information objects using the HTIP Accept
header field (specified in Table 2) as the RECOMM ENDED content negotiation mechanism.

TRAGK1234 trttp;//Mia.llOto.(rrl{wa/~l/
llnformitioo Object) tnld\...ttrllict/ttoclc1234

XMl
REQUEST OR

(DATA Consumer)

XHTMl
REQUESTOR

(DATA consumer)

>SON
REQUESTOJI

IDATA oonsumtr)

Figure 1 RECOMMENDED mechanism for supporting information object representation

Page 20 of 32

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

--$- NATO UNCLASSIFIED

•JCI
A G E N C Y INSTR TECH 06.02.07

3.3.1.5 Cookies

According to [Fielding, 2000] "Cookies ... violate REST because they allow data to be passed without
sufficiently identifying its semantics". Essentially, cookies are used to maintain state, which is in
violation of the principles of REST.

However, this SIP recognizes that cookies are widely used to contain session and authentication data.
Therefore:

• Cookies SHALL be used in accordance with [IETF RFC 2965, 2000] .

• Cookies MAY be used to contain session data.

• Cookies MAY be used to contain authentication data.

• Cookies MAY NOT be used to contain other data.

3.3.1.6 Caching

It is RECOMMENDED that Web Service Consumers support caching.

Web Service Consumers that claim support for caching SHALL support caching for the HTIP GET and
HEAD verbs only.

A URI path that contains a query element SHOULD be treated as un-cacheable.

Web Service Consumers and Web Service Providers on the network SHOULD have synchronized time
sources.

3.3.1.6.1 Expi ration Caching

Web Service Consumers t hat claim support for caching can indicate to the Web Service Providers
whether to return a cached response and the threshold for t he age of the response the Web Service

Consumer is will ing to accept.

Table 3 specifies the HTIP header fie lds and, where appropriate, header field valu es that are
REQUIRED and RECOMMENDED to support expiration caching.

Table 3
Specifications for HTIP Request header fields requi red for expi ration caching

HTIP header field name/
Description

(header field value)

Cach e-Control/ RECOMMENDED header field and header field va lue
(max- age) ind icat ing that the client is willing to accept a response

whose age is no greater t han the specified time in seconds.

Cach e -Control / RECOMMENDED header field and header field value
(min-fresh) indicating that the client is willing to accept a response

whose freshness lifetime is no less than its current age plus
the specified time in seconds.

Cach e-Control/ OPTIONAL header field and header field value indicating that
(max-stale) the client is willing t o accept a response that has exceeded

its expiration t ime.

Page 21of32

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

-$
(QCI
AGENCY

3.3.1.6.2 Validation Caching

NATO UNCLASSIFIED

INSTR TECH 06.02.07

Validation caching allows the Web Service Consumer to interrogate the Web Service Provider for the
purposes of determining if the cached HTIP response is still valid.

Table 4 specifies the HTIP header fields and, where appropriate, header field values that are
REQUIRED and RECOMMENDED to support validation caching.

Table 4
Specifications for HTIP Request header fields required for validation caching

HTIP header field name/
Description Conditions

(header field value)

Cache - Control/ OPTIONAL header field This header field and header field value
(only-if-cached) and header field value are RECOMMENDED to be set in tactical

networks where links are impoverished.

If-Modified-Since OPTIONAL header field RECOMMENDED header field when the
cached response contains the Expires
and Last-Modified header fields.
This header field MUST NOT be set if the
HTIP request contains the header field
If-Unmodified-Since.

If - Unmodified-Since OPTIONAL header field RECOMMENDED header field when the

cached response contains the Expires
and Last-Modified header fields.
This header field MUST NOT be set if the
HTIP request contains the header field
If - Modified-Since .

If-Match OPTIONAL header field RECOMMENDED header field when the
cached response contains the ETag
header field.
This header field MUST NOT be set if the
HTIP request contains the If-None-
Match header field.

If - None - Match OPTIONAL header field RECOMMENDED header field when the
cached response conta ins the ETag
header field.
This header field MUST NOT be set if the

HTIP request contains the If-Match
header field.

3.3.1.6.3 Security

Caching of sensitive information by Web Service Consumers SHALL be prohibited.

Information SHALL NOT be cached when an HTIP request contains a HTIP Cache-Control header
field with the values: no - store and no-cache .

Page 22 of 32

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

I

NATO UNCLASSIFIED -$-
~CI

A G E N C Y INSTR TECH 06.02.07

Additional constraints, such as digital encryption and digital signatures, SHOULD be applied in order
to provide additiona l protection for confidentiality, availability and integrity of sensitive informat ion
objects.

3.3.1.7 Reserved Parameters

Currently this SIP does not reserve any parameters for exclusive use.

3.3.2 Output

This SIP places no constraints on the type of data that can be sent by the Web Service Provider in an
HTIP response. However, it is RECOMMENDED that only XML or JSON be used.

3.3.2.1 Status Code

The response MUST contain an HTIP status code as defined in [IETF RFC 2616, 1999).

3.3.2.2 HTTP Headers

HTIP headers MUST only be used to transmit representation metadata and message control
information . Parameters for the operation to be performed on the resource MUST NOT be sent as
HTIP headers.

It is RECOMMENDED that only standard headers are used. An informational list of these HTIP
headers for an IANA registry header fields can be found in [IETF RFC 4229, 2005). However, well
documented custom headers MAY be used.

The set of RECOMMENDED and REQUIRED response headers are included in Table 5.

HTTP header field
name

Cach e - Con t r o l

Content- Lengt h

Content - Type

Da t e

Location

3.3.2.3 Cookies

Table 5
Response HTIP headers

Required Notes

RECOMMENDED This is used to specify how all entities will cache
the information. For further details on this and
other caching headers see Section 3.3.2.4.

RECOMMENDED This specifies the length of the body of the
message (if known).

REQUIRED Th is specifies the format of the body sent in the
response. For further information see
Section 3.3.1.4.

REQUIRED This specifies the date and time that the HTIP
response was originat ed.

OPTIONAL Used to support redirect ions in cases where the
URI of a resource is not persistent, as described in
Section 3.3.1.3.3.

According to [Fielding, 2000) "Cookies ... violate REST because they allow data to be passed without
sufficiently identifying its semantics". Essentially, cookies are used to maintain st ate, which is in
violation of the principles of REST.

Page 23 of 32

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

' NATO UNCLASSIFIED -~-

•1c1
A G E N C Y INSTR TECH 06.02.07

However, this SIP recognizes that cookies are widely used to contain session and authentication data.
Therefore:

• Cookies SHALL be used in accordance with [IETF 2965, 2000].

• Cookies MAY be used to contain session data.

• Cookies MAY be used to contain authentication data.

• Cookies MAY NOT be used to contain other data.

3.3.2.4 Caching

It is RECOMMENDED that Web Service Providers (origin servers, services) support caching.

Web Service Providers that claim support for caching SHALL support caching for the HTIP GET and
HEAD verbs only.

A URI path that contains a query element SHOULD be treated as un-cacheable.

Web Service Consumers and Web Service Providers on the network SHOULD have synchronized t ime
sources.

3.3.2.4.1 Expiration Caching

Web Service Consumers that claim support for caching SHALL support the HTIP header fields:
Expires and Date; or, Cache-Control.

Table 6 specifies the HTIP Response header fields required for expiration caching.

Table 6
Specifications for HTIP response header fields required for expiration caching

HTIP header field name/
Description Conditions

(header field value)

Cache-Control/ REQUIRED header field that
(max-age) specifies the amount of time

before the information object
expi res.

Expires OPTIONAL header field that REQUIRED if the Cache-Control
specifies the expiration time of header field with a header field value
the information object. of max-age is not set in the HTIP

response.

Date REQUIRED header field that Used in conjunction with the
specifies the date and time at Expires header field to determine
which the HTIP response was the amount of time before the
originated. information object expires.

3.3.2.4.2 Validation Caching

Validation caching allows the Web Service Consumer to interrogate the Web Service Provider for the
purposes of determining if the cached HTIP response is still valid.

Web Service Consumers that claim support for validation caching SHALL support the HTIP Cache
Con trol header field with va lues: no-cache; max-age=O; must-revalidate; and, proxy
reval idate.

Page 24 of 32

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

-$
~CI

NATO UNCLASSIFIED

A G E N C Y INSTR TECH 06.02.07

Web Service Consumers and Web Service Providers that claim support for validation caching MAY
support the HTIP ETag header field, HTIP If-None-Match header field and HTIP If-Match
header field to determine if the cached response has changed.

Web Service Consumers and Web Service Providers that claim support for validation caching SHALL
support the HTIP Last-Modified header field to determine ifthe cached response has changed.

Table 7 specifies the HTIP response header fields required for validation caching.

Web Service Providers that claim support for validation caching SHALL return a 3 04 (not modified)
HTIP status code to indicate that the response has not been modified.

3.3.2.4.3 Security

Caching of sensitive information by Web Service Consumers SHALL be prohibited.

Web Service Consumers SHALL NOT cache information contained within an HTIP response that
contains an HTIP Cache-Control header field with the values: no-store ; no-cache; and,
private.

Additional constraints, such as digital encryption and digital signatures, SHOULD be applied in order
to provide additional protection for confidentiality, availability and integrity of sensitive information
objects.

3.3.3 Errors

An error can be encountered either based on the submitted HTIP request from the Web Service
Consumer or because of issues encountered within the Web Service Provider.

An error SHALL be conveyed in accordance with [IETF RFC 2616, 1999] status codes.

It is RECOMMENDED that an HTIP status code of 4xx is returned in the HTIP response when an error
occurs due to the HTIP request from the Web Service Consumer.

It is RECOMMENDED that an HTIP status code of Sxx is returned in the HTIP response when an error
occurs within the Web Service Provider.

The RECOMMENDED list of HTIP status codes to be conveyed as 4xx or Sxx errors are provided at
[IANA HTIP Status Codes, 2012].

It is RECOMMENDED that the HTIP response, indicating the error, includes a Date header field with
the date and time stored as the Date header field value indicating the time the error occurred.

Page 25 of 32

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

'
-~-

a c 1
NATO UNCLASSIFIED

A G E N C Y INSTR TECH 06.02.07

Table 7
Specifications for HTIP response header fields required for va lidat ion caching

HTIP header field name/
Description Conditions

{header field value)

Cache-Control/ OPTIONAL header field and
(max-age =O) header field value that

instructs the Web Service

Consumer to revalidate the
HTIP Response.

Cache-Control/ OPTIONAL header field and REQUIRED header field and
(no-cache) header fie ld value that header field value if information

instructs the Web Service object MUST NOT be cached.
Consumer to revalidate the
HTIP Response as caching is
not permitted.

Cache-Control/ REQUIRED header field and
(must-revalidate) header field value to instruct

the Web Service Consumer to
reva lidate the cached
information object when the
information object has
expired.

Cache-Control/ OPTIONAL header field and
(proxy- reval i d a te) header field value for

int ermediaries.

Cache-Control/ OPTIONAL header field and RECOMMENDED header field
(public) header fie ld value. and header field value when the

Cache - Control header field
and proxy-revalidate
header field value is set in the
HTIP Response.

Last-Modi fied REQUIRED header field
indicating the last time the
information object was
modified.

ETag OPTIONAL header field
representing a unique
identifier for the requested
resource.

Page 26 of 32

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

' NATO UNCLASSIFIED -$-
4\ICI

A G E N C Y INSTR TECH 06.02.07

4 REFERENCES

[Fielding, 2000]:
R. Fielding (on-line), http://www.ics.uci.edu, "Architectural Styles and the Design of Network-based
Software Architectures", Ph.D. Thesis, University of California, Irvine, at
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm, 2000, viewed 29 August 2012.

[IANA HTIP Status Codes, 2012]:
Internet Assigned Numbers Authority (online), http://www.iana.org, "Hypertext Transfer Protocol
(HTIP) Status Code Registry", at http://www.iana.org/assignments/http-status-codes/http-status
codes.xml, 1 May 2012, viewed 29 August 2012.

[IETF RFC 1035, 1987]:
Internet Engineering Task Force (on-line), http://www.ietf.org, Request for Comments 1035,
"Domain Names Implementation and Specification", P.V. Mockapetris, at
http://tools.ietf.org/html/rfc1035, November 1987, viewed 29 August 2012.

[IETF RFC 2119, 1997]:
Internet Engineering Task Force (on-line), http://www.ietf.org, Request for Comments 2119, "Key
Words for Use in RFCs to Indicate Requirement Levels", S. Bradner, at
http://tools.ietf.org/html/rfc2119, March 1997, viewed 29 August 2012.

[IETF RFC 2616, 1999]:
Internet Engineering Task Force (on-line), http://www.ietf.org, Request for Comments 2616,
"Hypertext Transfer Protocol -- HTIP/1.1", R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.
Leach, T. Berners-Lee, at http://tools.ietf.org/html/rfc2616, June 1999, viewed 29 August 2012.

[IETF RFC 2817, 2000]:
Internet Engineering Task Force (on-line), http://www.ietf.org, Request for Comments 2817,
"Upgrading to TLS within HTIP/1.1", R. Khare, S. Lawrence, at http://tools.ietf.org/html/rfc2817,
May 2000, viewed 29 August 2012.

[IETF RFC 2965, 2000]:
Internet Engineering Task Force (on-line), http://www.ietf.org, Request for Comments 2965, "HTTP
State Management Mechanism", D. Kristal, L. Montulli, at http://tools.ietf.org/html/rfc2965, October
2000, viewed 29 August 2012.

[IETF RFC 3023, 2001]:
Internet Engineering Task Force (on-line), http://www.ietf.org, Request for Comments 3023, "XML
Media Types", M. Murata, S.S. Laurent, D. Kohn, at http://tools.ietf.org/html/rfc3023, January 2001,
viewed 29 August 2012.

[IETF RFC 3986, 2005]:
Internet Engineering Task Force (on-line) http://www.ietf.org Request for Comments 3986, "Uniform
Resource Identifier (URI): Generic Syntax" , T. Berners-Lee, R. Fielding, L. Masinter, at
http://tools.ietf.org/html/rfc3986, January 2005, viewed 29 August 2012.

[IETF RFC 4229, 2005]:
Internet Engineering Task Force (on-line), http://www.ietf.org, Request for Comments 4229, " HTIP
Header Field Registrations", M. Nottingham, J. Mogul, at http://tools.ietf.org/html/rfc4229,
December 2005, viewed 29 August 2012.

Page 27 of 32

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

' NATO UNCLASSIFIED -$ -
4\ICI

A G E N C Y INSTR TECH 06.02.07

[ISO 8601:2004, 2004]:
International Organization for Standardization (on-line), http://www.iso.org, Standard ISO
8601:2004, "Data Elements and Interchange Formats - Information Interchange - Representation of
Dates and Times", 3 December 2004, viewed 29 August 2012.

[Leonard and Ruby, 2007]:
R. Leonard, S. Ruby, "RESTful Web Services", O'Reilly, 2007.

[Nottingham, 2005]:
M. Nottingham (on-line), http://tools.ietf.org, "POST Once Exactly {POE)", at
http://tools.ietf.org/html/draft-nottingham-http-poe-OO, 19 March 200, viewed 29 August 2012.

[Sun Microsystems Laboratories, Inc., 1994]:
Sun Microsystems Laboratories Inc. (on-line), http://labs.oracle.com, Note "A Note on
Distributed Computing", J. Waldo, G. Wyant, A. Wollrath, S. Kendall, at
http://labs.oracle.com/techrep/1994/smli_tr-94-29.pdf, November 1994, viewed 31 August 2012.

[Tidepedia "C3 Taxonomy", 2012]:
Tidepedia article (on-line), http://tide.act.nato.int, "NATO C3 Classification Taxonomy", at
http://tide.act.nato.int/tidepedia/index.php ?title= NATO_ C3 _Classification_ Taxonomy, 2012, viewed
31 August 2012.

[W3C RDF-Primer, 2004]:
World Wide Web Consortium (on-line), http://www.w3.org, "RDF Primer", W3C Recommendation, E.
Miller, F. Manola, at http://www.w3.org/TR/2004/REC-rdf-primer-20040210/, 10 February 2004,
viewed 31 August 2012.

[W3C WSDL 2.0: Primer, 2007]:
World Wide Web Consortium (on-line) http://www.w3.org, "Web Services Description Language
(WSDL) Version 2.0 Part 0: Primer", W3C Recommendation, C.K. Liu, D. Booth, at
http://www.w3.org/TR/2007 /REC-wsdl20-primer-20070626, 26 June 2007, viewed 31 August 2012.

[W3C Xlink 1.1, 2010]:
World Wide Web Consortium (on-line), http://www.w3.org, "XML Linking Language {Xlink) Version
1.1", W3C Recommendation, E. Maler, D. Orchard, N. Walsh, S. DeRose, at
http://www.w3.org/TR/2010/REC-xlinkll-20100506/, 6 May 2010, viewed 29 August 2012.

[IETF RFC 2119, 1997]:
Internet Engineering Task Force Request for Comments 2119, "Key Words for Use in RFCs to Indicate
Requirement Levels", S. Bradner, IETF, Sterling, Virginia, US, March 1997.

[NC3A RD-2814, 2009]:
NATO Consultation, Command and Control Agency Reference Document 2814, "Bi-SC AIS/NNEC SOA
Implementation Guidance" (provisional title}, J. Busch, S. Brown, R. Fiske, G. Hallingstad, M. Lehman,
NC3A, The Hague, Netherlands, unpublished document dated December 2009 (NATO Unclassified).

[NCIA TR/2012/CPW007253/05, 2012]:
NATO Communications and Information Agency Technica l Report 2012/CPW007253/05, "Security
Services Service Interface Profile Proposal for Security Token Service", R. Fiske, M. Lehmann,
R. Malewicz, L. Schenkels, D. Gujral, NCIA, The Hague, Netherlands, October 2012 (NATO
Unclassified).

Page 28 of 32

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

NATO UNCLASSIFIED _ _ch_
. -'11'.7

•1c1
A G E N C Y INSTR TECH 06.02.07

[NCIA TR/2012/CPW007253/06, 2012) :
NATO Communications and Information Agency Technical Report 2012/CPW007253/06, "Security
Services Service Interface Profile Proposal for A Policy Enforcement Point", R. Fiske, M . Lehmann, R.
Malewicz, L. Schenkels, D.Gujral, NCIA, The Hague, Netherlands, October 2012 (NATO Unclassified).

[NCIA TR/2012/SPW008000/ 30, 2012):
NATO Communications and Information Agency Technical Report 2012/SPW008000/30, "Messaging
Service Interface Profile Proposa l", R. Fiske, M. Lehmann, NCIA, The Hague, Netherlands, October
2012 (NATO Unclassified).

[OASIS Delegation, 2009]:
Organization for the Advancement of Structu red Information Standards (on-line), http://www.oasis
open.org, SAML V2.0 Condition for Delegation Restriction Version 1.0, at http://docs.oasis
open.org/security/saml/Post2.0/sstc-saml-delegation.pdf, 15 November 2009, viewed 30 March
2011.

[OASIS SAML, 2005):
Organization for t he Advancement of Structured Information Standards (on-line), http://www.oasis
open.org, Assertions and Protocols for the OASIS Security Assertion Markup La nguage (SAML) V2.0.,
at http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf, 15 March 2005, viewed 30
March 2011.

[OASIS SAML Token Profile, 2006):
Organization for the Advancement of Structured Information Standards (on-line), http://www.oasis
open.org, Web Services Security: SAML Token Profile 1.1, at http://docs.oasis
open.org/wss/vl .1/wss-vl.1-spec-os-SAMLTokenProfi le.pdf, 1 February 2006, viewed 30 March
2011.

[OASIS WS-Security, 2006):
Organization for t he Advancement of Structured Information Standards (on- line), http://www.oasis
open.org, Web Services Security: SOAP Message Security 1.1, at http://docs.oasis
open.org/wss/vl.1/wss-vl.1-spec-os-SOAPMessageSecurity.pdf, 1 February 2006, viewed 30 March
2011.

[OASIS WS-SecurityPolicy, 2009) :
Organization for t he Advancement of Structured Informat ion Standards (on-line), http://www.oasis
open.org, WS-SecurityPolicy 1.3, at http ://docs.oas is-open.org/ws-sx/ws-securitypo licy/vl .3/ws
securitypolicy.html, 2 Febru ary 2009, viewed 30 March 2011.

[OASIS WS-Trust, 2009]:
Organization for the Advancement of Structured Information Standards (on-line), http://www.oasis
open.org, "WS-Trust 1.4" at http://docs.oasis-open.org/ws-sx/ws-trust/vl.4/ws-trust.doc, 2 February
2009, viewed 30 March 2011.

[W3C WS-Addressing, 2006):
World Wide Consortium (on-line), http://www.w3.org, Web Services Addressing 1.0 - Core, at
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/, 9 May 2006, viewed 30 March 2011.

[W3C XML-Encryption, 2002):
Worl.d Wide Consortium (on-line), http://www.w3.org, XML Encryption Syntax and Processing, at
http://www.w3.org/TR/xmlenc-core/, 10 December 2002, viewed 30 March 2011.

Page 29 of 32

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

-~
~Cl

A G E N C Y

[W3C XML-Signature, 2002]:

NATO UNCLASSIFIED

INSTR TECH 06.02.07

World Wide Consortium (on-line), http://www.w3.o rg, XML-Signature Syntax and Processing, at
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/0verview.html, 12 February 2002, viewed
30 March 2011.

[WS-Federation, 2006]:
WS-Federation (on- line), Web Services Federation Language (WS Federation) Version 1.1, at
http://specs.xmlsoap.org/ws/2006/12/federation/ws-federation.pdf, December 2006, viewed 30
March 2011.

[WS-1 Security, 2010]:
Web Services Interoperability Organization (on-line), http://www.ws-i.org, Basic Security Profile
Version 1.1, at http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html, 24 January 2010, viewed
30 March 2011.

Page 30 of 32

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

--$-- NATO UNCLASSIFIED

4\ICI
A G E N C Y INSTR TECH 06.02.07

5 ABBREVIATIONS

API Application programming interface

CIS Communications and information system

CORBA Common object request broker architecture

CRUD Create, read, update and delete

DCE Distributed computing environment

DCOM Distributed component object model

DNS Domain name system

FQDN Fully qualified domain name

HATEOAS Hypertext as the engine of application state

HTML Hypertext markup language

HTIP Hypertext transfer protocol

IANA Internet Assigned Numbers Authority

IETF Internet Engineering Task Force

IP Internet protocol

JPEG Joint Photographic Experts Group

JSON JavaScript object notation

NNEC NATO Network Enabled Capability

NU NATO Unclassified

POE Post once exactly

REST Representational state transfer

RMI Remote method invocation

RPC Remote procedure call

SIP Service Interface Profile

Page 31of32

NATO UNCLASSIFIED

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

-$
•1c1

A G E N C Y

SOAP

SQL

URI

WSDL

XML

NATO UNCLASSIFIED

Simple object access protocol

Structured query language

Uniform resource identifier

Web services description language

Extensible markup language

NATO UNCLASSIFIED

INSTR TECH 06.02.07

Page 32 of 32

D
E

C
LA

SS
IF

IE
D

 -
PU

B
LI

C
LY

 D
IS

C
LO

SE
D

 -
 P

D
N

(2
01

5)
00

18
 -

 D
É

C
LA

SS
IF

IÉ
 -

M
IS

 E
N

 L
E

C
T

U
R

E
 P

U
B

LI
Q

U
E

